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Abstract. Fermi edge absorption singularities (FES) are studied using a combination of
conformal field theory (CFT), an exact sum rule and numerical work on a tight-binding model
which is shown to exhibit remarkable simplifying features. The relationship between FES and
the Anderson orthogonality exponent is established in great generality, using CFT, including the
case where the core hole potential produces a bound state. Universal results on the absorption
intensity in a finite-sized sample are obtained. Various predictions are checked numerically and
the evolution of the absorption intensity with electron density is studied.

1. Introduction

A theoretical understanding of the Fermi edge singularity (FES) in x-ray absorption in
metals and of the related Anderson orthogonality catastrophe dates back to the 1960s [1–10].
Nonetheless, this remains an active area of research today, in part because of theoretical and
experimental work in systems of reduced dimensionality where strong correlation effects
may play an important role [11–18]. In particular, a new and very general theoretical
approach has been developed, based on conformal field theory [12].

Recent experiments have studied optical absorption threshold singularities in modulated,
doped semiconductor layered structures [17, 18]. These behave somewhat like two-
dimensional metals with a continuously tunable electron density. The potential produced
by the valence band hole is expected to produce a bound state (exciton) due to the well
known theorem that an attractive potential in two dimensions always has a bound state.
Many interesting issues are raised by these experiments which have not yet been adequately
addressed theoretically. In particular, it is possible to study the behaviour of the threshold
singularities as the electron density goes to zero. In some cases an additional threshold
corresponding to a negatively charged exciton (two conduction electrons bound to a valence
hole) is observed. Strong correlation effects may play a crucial role in this case and the
usual Fermi liquid approach may need to be modified.

The present work addresses several issues in this field, within the usual Fermi liquid
framework. The case of a core potential producing a bound state is considered, as is the
behaviour of the threshold singularities as a function of electron density. Furthermore,
we consider the nature of the absorption intensity for a simple model of a finite sample.
The techniques employed in this paper are a combination of conformal field theory (CFT)
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methods, an exact sum rule and numerical work on a tight-binding model which exhibits
remarkable simplifying features making it feasible to study very large systems.

The conformal field theory method of [12] is extended to the case where there is a
bound state. A very simple and general proof of the exact correspondence between the FES
exponent and the orthogonality exponent is given. The absorption intensity near threshold
for a finite system is shown to have a simple universal form, using conformal field theory.
An exact sum rule is introduced which determines the ratio of absorption intensities for the
two cases where the core bound state is empty or full.

Numerical work on the simple tight-binding model is used to check the validity
of Anderson’s formula relating the orthogonality exponent to the phase shift at the
Fermi surface, the Nozières–De Dominicis, Combescot–Nozières formulae [2, 6] for FES
exponents including the bound-state case, and the formulae derived here for the absorption
intensity in a finite system. In addition, this numerical work, together with the sum rule, is
used to study the behaviour of the absorption intensity as a function of density.

The tight-binding model we employ can be considered as one spin channel of the one-
dimensional Hubbard open chain (i.e. with independent boundary conditions on each end)
in the non-interacting limit. The latter system is completely integrable, as was shown by
Bethe Ansatz techniques [19, 20]. This allows one to obtain finite size corrections to the
spectrum and thus FES exponents, including the case when the bound states are formed at
the boundary [21–23], but the treatable expressions for the many-particle overlaps (section 4)
do not hold in the presence of interactions, as far as we know.

Some of the new conformal field theory results were briefly described in [24].

2. Conformal field theory approach

An approach based on boundary conformal field theory [12, 24] provides a unified view of
the problem. As usual, we start from the simplest possible model [2],

H =
∑
k

εkc
†
kck + b†b

∑
k,k′

Vk,k′c
†
kck′ + E0b

†b. (2.1)

Here the band of spinless, non-interacting electrons(c†, c) is scattered by the core hole
potential Vk,k′ . The core hole(b†, b) is dispersionless. It is created and annihilated
instantaneously (by irradiation), and the reaction of the band electrons on this instantaneous
perturbation constitutes the FES and Anderson orthogonality effects.

In the low-energy limit, the system is mapped onto the(1 + 1)-dimensional Dirac
fermions defined on a rayr > 0 with a scattering potentialV at the origin. (This can be
done by assuming spherical symmetry ofεk andVk,k′ and considering only s-wave scattering;
generalizations to other cases are straightforward.) The following discussion applies, with
minor modifications, to either an s-wave projected three-dimensional (3D) problem or to
a problem defineda priori in one-dimension. We will henceforth generally consider the
one-dimensional (1D) case. We could consider, for example, a 1D tight-binding model,
defined on the positive half-line, with free boundary conditions and a potential localized
nearx = 0. See appendix A for a detailed discussion of this model. The corresponding
boundary condition in the low energy Dirac theory is:

ψL(0) = ψR(0). (2.2)

The role of the scattering potential in the theory here is to impose an effective boundary
condition on the low-energy degrees of freedom, relating the left and right movers:

ψR(0) = e2iδ(kF )ψL(0). (2.3)
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Here δ(kF ) is the phase shift at the Fermi surface;k-dependence of the actual phase shift
is irrelevant at low energies. The action of the hole creation operator,b†, thus reduces to
that of a primary boundary condition changing operator,O. The Green’s function (hole
propagator) of this operator in a half plane,z = r + iτ, r > 0, is

G(τ1− τ2) ≡ 〈b(τ1)b
†(τ2)〉 = 〈A; 0|O(τ1)O(τ2)|A; 0〉 = 1

(τ1− τ2)2x
. (2.4)

Herex is the scaling dimension ofO, and |A; 0〉 is the ground state of the infinite system
(full Fermi sea) without scattering potential. Physically, the Green’s function is directly
related to the absorption intensity in the case of photo-emission,

I (ω) ∝
∫

dt ei(ω−ω0)t 〈b(t)b†(0)〉 ∝ (ω − ω0)
−α (2.5)

whereω0 is the threshold frequency. Evidently, the (FES) exponentα and the scaling
dimension are related via

γ ≡ 1− α = 2x. (2.6)

Looking for finite-size effects, we conformally map the half plane onto the strip,
l > r > 0 by using the transformationz = leπw/l . In a bosonic system this automatically
gives the same boundary condition at 0 andl. However, for fermions it gives:

ψL(0) = ψR(0) ψL(l) = −ψR(l). (2.7)

This follows because the fermion fields transform as:

ψL→ (dz/dw)1/2ψL

ψR → (dz∗/dw∗)1/2ψR.
(2.8)

At w = x + il,

(dz/dw)1/2/(dz∗/dw∗)1/2 = −1. (2.9)

This transformed problem corresponds to considering a 1D model defined on a finite line,
0< x < l, with the impurity potential nearx = 0 and an appropriate boundary condition at
x = l. Alternatively, the 3D s-wave projected system is now defined inside a finite sphere
of radius l with an appropriate boundary condition on the surface of the sphere. For a
discussion of this boundary condition and more details, see appendix A.

We find for the Green’s function on the strip

〈AA; 0|O(u1)O(u2)|AA; 0〉 = 1(
2l
π

sinh π
2l (u1− u2)

)2x (2.10)

|AA; 0〉 being the unperturbed ground state of the system of lengthl, with the ‘same’
boundary condition,A, given by equation (2.3) at both ends.

In equation (2.10) we can either Taylor expand sinh in the limitπ(u1 − u2)/ l � 1,
or insert a complete set of states|AB;m〉 (eigenstates of the system with the scattering
potential—boundary condition ‘B’—present), and obtain the relation(π
l

)2x
e−

πx(u1−u2)
l

(
1+ 2xe−

π(u1−u2)
l + 2x(2x + 1)

2
e−

2π(u1−u2)
l

+2x(2x + 1)(2x + 2)

6
e−

3π(u1−u2)
l + · · ·

)
=
∑
m

|〈AA; 0|O|AB;m〉|2e−[EABm −EAA0 ][u1−u2] . (2.11)
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If for the operatorO the first non-vanishing matrix element is with the ground state
of the perturbed system,|AB; 0〉, then for the overlap of the two ground states (Anderson
orthogonality catastrophe)

|〈AA; 0|O|AB; 0〉| =
(π
l

)x
. (2.12)

The Anderson orthogonality exponent coincides with the scaling dimensionx; on the other
hand, x is given by the O(1/l)-contribution to the ground-state energy shift due to the
perturbation [12, 24]

x = l

π
[EAB0 − EAA0 ]. (2.13)

Here it is implicitly assumed that this energy difference consists of a term of O(1/l) only, as
would follow from conformal invariance. As discussed in appendix A there will in general
also be a term of O(1) which must be subtracted.

A simple way of determining the Fermi edge exponentγ and the orthogonality exponent
x, is thus to calculate the 1/l finite-size correction to the difference in ground-state
energies of the system with and without the scattering potential. The term of O(1) is
non-universal (cut-off dependent) while the higher-order terms contain the corrections from
various irrelevant operators. On the other hand, we expect the term of O(1/l), which is
determined only by the immediate vicinity of the Fermi surface, to be universal and to give
the desired FES and orthogonality exponents. In fact, this result remains true including
bulk Coulomb interactions in one dimension [12]. Thus calculation of the O(1/l) term in
the ground-state energy difference gives a very simple way of determining the FES and
orthogonality exponents in great generality. This calculation is given in detail, for a 1D
tight-binding model, in appendix A. The conclusion is:

x = 1

2
[
δ(kF )

π
]2. (2.14)

While various derivations of this result, both for the FES exponent and for the
orthogonality exponent have been given before, this one has certain distinct advantages.
The original derivation of the orthogonality exponent by Anderson made a variety of
approximations, including Taylor expanding certain quantities in powers of the phase shift.
The derivation of the FES exponent in [2] also initially assumed a smallδ(kF ) and then
argued for the generality of the result by some fairly subtle consistency arguments. The
bosonization derivations start with a bosonized Hamiltonian written in terms ofδ(kF )

whereas a naive bosonization in fact only picks up the Born approximation toδ, linear
in the scattering potential. It is expected that eliminating the high-energy modes somehow
renormalizes this parameter in the bosonized Hamiltonian, turning it into the true phase
shift. Once the assumption of conformal invariance is made, it is very straightforward
to demonstrate that it is precisely the phase shift at the Fermi surface which enters the
exponents, by an explicit calculation of the ground-state energy, as given in appendix A.
We note that once the bosonized Hamiltonian is assumed, the results for the strip can be
obtained by a mode expansion of the boson field. This, of course, gives the same result
obtained more simply by the conformal transformation.

Another advantage of this somewhat abstract approach to the problem is that it can be
immediately generalized to the case where the core potential creates a bound state. The
Green’s function can then be presented as a sum of two terms:

G(u) = Ge(u)+Gf (u) =
∑
m

|〈AA; 0|O|AB;m; e〉|2e−[EABm,e−EAA0 ]u
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+
∑
n

|〈AA; 0|O|AB; n; f 〉|2e−[EABn,f−EAA0 ]u (2.15)

where the first sum is taken over all states|AB;m; e〉, where the bound state is empty, and
the second over the states|AB; n; f 〉 where it is full. These two terms give rise to two
peaks in the absorption rate, separated by the binding energy,1ω = |EB |. Introducing the
occupation number of the bound state,n̂B ,

G(u) = 〈[b(u)n̂B(u)][ n̂B(0)b†(0)]〉 + 〈[b(u)(1− n̂B(u))][ (̂1− n̂B(0))b†(0)]〉. (2.16)

In the long-time limit we may calculate each of these terms separately using the boundary
conformal field theory approach. The bound state is associated with a finite binding energy,
EB and an exponentially decaying wavefunction. Thus, it has no direct effect on the O(1/l)
terms in the energies. Therefore we expect the above formulae to immediately apply for
the first threshold where the bound state is filled, with the exponent:

xf = 1

2

[
δ(εF )

π

]2

. (2.17)

When the bound state is empty, the only change in the low-energy physics is that one
additional electron is raised to the first unoccupied state above the Fermi surface. This has
the wavevector:

k = kF + π
l

[
1

2
− δ(εF )

]
. (2.18)

We may regardb[1− n̂B ] as a different boundary condition changing operator which creates
one additional low-energy electron, in addition to producing the new boundary condition of
equation (2.3). The O(1/l) term in the ‘ground-state’ energy difference in the case of the
empty bound state is, from appendix A:

E′0− E0 = vF π
l

1

2

[
δ(εF )

π
− 1

]2

. (2.19)

Thus the orthogonality exponent giving the overlap between the unperturbed ground state
and the ‘ground state’ with the empty bound state is:

xe = 1

2

[
δ(εF )

π
− 1

]2

. (2.20)

The FES exponents for the two thresholdsαf andαe are given by:

αf = 1− 2xf αe = 1− 2xe. (2.21)

By merely computing the ground-state energy, rather than attempting to compute the
exponents directly, we have finessed the problem of attempting to bosonize the theory
with the bound state. We note that these results agree with Combescot and Nozières[6]
and Hopfield [4]. The present derivation seems quite closely related to the observation of
Hopfield that the FES exponent measures the amount of charge pulled in from infinity by
the bound state.

The conformal mapping from the plane to the strip establishes in a simple way
the relationship between the FES exponents of the infinite system and the orthogonality
exponents and energies of the finite system. In fact this mapping provides considerably more
information. Let us imagine a rather artificial situation where a core hole is instantaneously
created at the end of a finite 1D system. (Equivalently, we could consider an artificial
situation where it is created at the centre of a finite sphere.) In this case the absorption
intensity,I (ω) of equation (2.5) becomes a series ofδ-function peaks, as we see by Fourier
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transforming equation (2.11). The peaks occur atωm = EABm − EAA0 = π(x + m)/l, the
energies of excited states of the perturbed system measured from the unperturbed ground-
state energyEAA0 . (The neglected term of O(1) just shifts the threshold byω0.) It follows
from (2.11) that the ratio of themth peak to the zeroth one depends only onx:

|〈AA; 0|O|AB;m〉|2
|〈AA; 0|O|AB; 0〉|2 =

2x(2x + 1)(2x + 2) . . . (2x +m− 1)

m!
. (2.22)

Note that from equation (2.11), each of these peak intensities scales with length the
same way as the zeroth peak does, the latter was considered by Anderson and is given
by equation (2.12). The ratios of peak intensities are length-independent pure universal
numbers, determined only byδ(kF ).

In fact, each of these peaks corresponds, in general, to several different states with
energies that are degenerate, to O(1/l). These are simply multiple particle-hole excitations
of the free fermion system, with a dispersion relation which is linearized and a phase shift
which is assumed to bek-independent, near the Fermi surface. A general particle-hole
excitation may be constructed by first raisingnm electronsm levels, then raisingnm−1

electronsm− 1 levels, etc. The energy relative to the ground state of this state is:

EABm − EAB0 =
π

l

∞∑
p=1

npp. (2.23)

The first excited state hasn1 = 1, np = 0 for p > 1. The next degenerate pair of states
hasn1 = 2 or n2 = 1 (with the othernp = 0). The third set of excited states is threefold
degenerate withn1 = 3 or n1 = n2 = 1 or n3 = 1 (and the othernp = 0 in all cases).
Corrections to the linear dispersion relation and variation ofδ(k) nearkF will split these
energies by amounts of O(1/l2). The simple prediction obtained here from a conformal
transformation does not give the amplitude of each peak separately, but only the sum of
amplitudes of all peaks at a given energy, where energy differences of O(1/l2) are ignored.

This new finite-size result interpolates, in a sense, between the orthogonality exponent
and the FES exponent. Considering the largem limit of equation (2.22) we find that the
intensity decays asm−(1−2x), recovering the FES exponent.

This result immediately applies to the peaks corresponding to the bound state being filled
or empty, provided that the appropriate orthogonality exponents,xf andxe of equation (2.17)
and (2.20) are used.

3. One-dimensional tight-binding model

An evident discrete counterpart to the system (2.1) in its 1D version is the system of spinless
fermions on a finite 1D chain with nearest-neighbour hopping, free boundary conditions and
an impurity potential which can be switched on/off at the first site:

H = H0+ b†bH1

H0 = −t
l−2∑
i=1

(ψ
†
i ψi+1+ ψ†i+1ψi)

H1 = −Vψ†1ψ1.

(3.1)

Here we choseV to be positive in case of an attractive core potential, and also choset > 0.
This model is very amenable to large-scale numerical work with a minimum of effort.
Not only can the single particle energies and wavefunctions for finitel be found exactly
in a simple form, but, more remarkably, the overlaps of the single particle wavefunctions
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corresponding to different values of the potential,V , obey an exact factorization. This
enormously simplifies the calculation of the overlap of the many-particle, Bloch determinant,
wavefunctions. This can then be expressed by the Cauchy determinant formula, used as an
approximation by Anderson [10] in his classic paper on the orthogonality catastrophe. The
many-body overlaps are easily evaluated numerically and in some limits analytically (e.g.
in the narrow band limit,t

V
→ 0). As a result, chains of lengths up to few thousand sites

are easily handled on a workstation using the standard ‘Mathematica’ package. The crucial
factorizability of one-particle overlaps disappears under any other position of the scattering
potential.

The details are given in appendix B; here we just summarize a few salient features,
beginning with the infinitel limit. This model has a band of eigenstates with exact
wavefunctions:

9j ∝ sin[kj + δ(k)] j = 1, 2, 3, . . . . (3.2)

The dispersion relation is:

ε(k) = −2t cosk. (3.3)

The phase shift is given by:

δ = arctan

[
sink

t/V − cosk

]
. (3.4)

Note that at the bottom of the band,k→ 0, δ→ 0 for V < t , when there is no bound state,
but δ→ π , for V > t when there is a bound state, as required by Levinson’s theorem. As
k ranges over the whole band, from 0 toπ , 06 δ(k) 6 π/2 for V < t , and 06 δ(k) 6 π
for V > t , as shown in figure 1. ForV � t , δ(k) ≈ π − k. There is one bound state, if
V > t only, with:

EB = −(V + t2/V ). (3.5)

Note that this approaches the bottom of the band,−2t , asV → t , where the bound state
disappears. The exact bound-state wavefunction is:

9B
j ∝ e−κj (3.6)

with

κ = ln(V/t). (3.7)

For finite l, there is a set of wavefunctions:

9n
j ∝ sink̃n(j − l) (3.8)

with the allowed wavevectors determined by:

sink(l − 1)

sinkl
= t

V
. (3.9)

For t/V > 1− 1/l there arel − 1 solutions of equation (3.9), which we label

k̃1, k̃2, . . . , k̃l−1. (3.10)

For t/V < 1−1/l there are onlyl−2 such wavefunctions, which we label 2, 3, . . . , (l−1)
and an additional wavefunction:

9̃1
j ∝ sinhκ(j − l) (3.11)

with κ the solution of:
sinhκ(l − 1)

sinhκl
= t

V
. (3.12)
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δ/
π

k/ π

Figure 1. Phase shift in the 1D tight-binding model versus densityν = liml→∞ N/(l − 1) =
kF /π , at t/V = 0, 0.05, 0.01, . . . ,2, 3, 4, 5. The dotted line,t/V = 1, separates regions with
and without bound state.

In the caseV = 0, the wavevectors are:

kn = πn/l n = 1, 2, 3, . . . , (l − 1). (3.13)

From equation (3.9) we see that, in the limitV/t →∞, the wavevectors are:

k̃n = (n− 1)π/(l − 1) n = 2, 3, 4, . . . (l − 1) (3.14)

corresponding to a chain of(l − 2) sites and a free boundary condition. The lowest
wavefunction (bound state) becomes localized atj = 1 in this limit with eigenvalue−V .

The overlaps between the unperturbed,ψ , and perturbed,̃ψ , one-particle states assume
the special form, reminiscent of the first-order perturbation theory, but actually exact
(appendix B):

〈9̃m|9n〉 = −V C(k̃m)C(kn)

ε(k̃m)− ε(kn)
(3.15)

〈9̃1|9n〉 = −V CBC(kn)

εB − ε(kn) (3.16)

where

C(k) =
√

2 sin(l − 1)k√
(l − 1)− sin(l − 1)k coslk/ sink

(3.17)

CB =
√

2 sinh(l − 1)κ√
sinh(l − 1)κ coshlκ/ sinhκ − (l − 1)

. (3.18)

4. Calculation of hole propagator. Comparison with the CFT predictions

The Green’s functionG(u) is determined by the set of matrix elements,

|〈AB;m|O|AA; 0〉| → 〈8̃m;e,f |80〉 ≡ C0m
e,f (4.1)

between (perturbed and unperturbed) many-body states of the system and corresponding
excitation energies,1εm;e,f (we note explicitly whether the bound state if present is filled
(f ) or empty (e), and label bym′ the appropriate excited states of the band).
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When there areN spinless non-interacting electrons in the system, the many-particle
wavefunction is aN ×N Slater determinant

8 = 1√
N !

det(9(nb)
la
). (4.2)

Here9(nb)
la

is an appropriate one-particle eigenfunction of the statenb, taken at the coordinate
of the ath particle,a, b = 1, 2, . . . , N .

The overlap of two such states is a determinant

(8̃,8) = 1

N !

∑
j1

. . .
∑
jN

det(9̃(m)∗
jn

) det(9(m)
jn
) ≡ det((9̃(m), 9(n))). (4.3)

The remarkable form of the one-particle overlaps (3.15), (3.16) allows us to apply the
Cauchy formula [25] in order to calculate the determinant (4.3):

det

(
1

am + bn

)
=
∏
m>n(am − an)

∏
m>n(bm − bn)∏

m,n(am + bn)
. (4.4)

Unlike the situation considered by Anderson [10] and Combescot and Nozières [6], in our
model the special form of the overlaps is an exact result, and not the consequence of the
linearization of the dispersion law close to Fermi surface.

We begin by calculatingC00
f , the overlap of the ground states of the system with and

without the core potential, which yields the Anderson exponent (2.12). In the corresponding
determinant (4.3) both ‘old’ and ‘new’ indices run fromn,m = 1 to n,m = N . (That is, in
the ‘new’ state there is one bound electron and(N − 1) electrons in the band, and noe–h
pairs.) The other interesting overlap,C00

e , corresponds to the situation when the bound state
in the ‘new’ system is empty, and allN electrons are in the band, occupying the lowest-
lying states (still noe–h pairs): n = 1, . . . , N , but m = 2, . . . , N + 1. It should yield
the ‘empty bound state’ Anderson exponent, which according to general considerations [4]
should be(1− δF

π
)2, as distinct from the ‘full’ value( δF

π
)2. Using the Cauchy formula, we

find

C00
f = (−V )NCB

N∏
m=2

C(κ̃m)

N∏
n=1

C(κn)

∏N
m>m′=1(ε̃m − ε̃m′)

∏N
n>n′=1(εn′ − εn)∏N

m=1

∏N
n=1(ε̃m − εn)

(4.5)

C00
e = (−V )N

N+1∏
m=2

C(κ̃m)

N∏
n=1

C(κn)

∏N+1
m>m′=2(ε̃m − ε̃m′)

∏N
n>n′=1(εn′ − εn)∏N+1

m=2

∏N
n=1(ε̃m − εn)

(4.6)

and for their ratio:

R = C00
e

C00
f

= C(κ̃N+1)

CB

ε1− ε̃1

ε̃N+1− ε1

N∏
m=2

ε̃N+1− ε̃m
ε̃N+1− εm

N∏
m=2

εm − ε̃1

ε̃m − ε̃1
. (4.7)

Expression (4.7) is easily calculated for rather-large systems, since it involves the number
of operations only of orderl. The approximate values for the energiesẼm can be accurately
calculated as a perturbation series int/V � 1 (see appendix B). If the above predictions
are valid, then the ratio should depend on the system size as

R ∝ (l − 1)
1
2

(
δF
π

)2− 1
2

(
1− δF

π

)2

= (l − 1)
δF
π
− 1

2 . (4.8)

HereδF is the phase shift at the Fermi surface,kF = πν.
The results are shown in figure 2 (t/V = 0.1 and 0.01) for (l − 1) 6 4000. As is clear

from the figures, the ratio as a function ofl at fixed densityν = N
l−1 behaves as

R(l; ν) ∝ (l − 1)ζ(ν) (4.9)
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Figure 2. (a) Logarithm of ratio|R| = |C00
e /C

00
f | as a function of (even) chain length(l − 1)

for t/V = 0.1 andν = 1
2 ; 2

5 ; 1
4 ; 1

10 and 1
100; the lines are best fits to points with(l − 1) > 10

by ln |R| = A+ ζ ln(l − 1); (b) Exponentζ(ν). The curve is
δ(ν; t

V
=0.1)
π

− 1
2 . (c) The same as

in (a) for t/V = 0.01 andν = 1
2 ; 1

5 ; 1
11 and 1

101 (in the latter three cases the length(l− 1) was
chosen to be odd); the lines are best fits to points with(l− 1) > 10 by ln|R| = A+ ζ ln(l− 1).

(d) Exponentζ(ν). The curve is
δ(ν; t

V
=0.01)
π

− 1
2 .

where indeed (the least squares best fit parameters are shown in figure captions):

ζ(ν) ≈ δF
(
ν; t

V

)
π

− 1

2
(4.10)

for δF (ν)

π
≈ 1

2 − ν, as seen in figure 1.
Calculation of the coefficientsC00

f,e themselves is more time consuming. We calculated
C00
e andC00

f in the limit t/V → 0 for (l − 1) 6 400. The results are shown in figure 3.
The matrix elements dependence on size and density are accurately described by

C00
e,f (l, ν) = Ae,f (ν)(l − 1)

− 1
2

( ˜δF (ν)
π

)2

(4.11)

thus confirming the validity of the original Anderson’s result [10] in the case of binding
core potential and arbitrary electronic density.

Turning to the contributions of the excited states,C0m′
f,e , we must remember that in the

model, the degeneracy of energy levels in the CFT formula (2.15) is lifted. Therefore when
checking equation (2.22), we calculate the ratios

∑′
m |C0m

e,f |2/|C00
e,f |2, where the sum is

extended over the excited states which would be degenerate in the case of linear dispersion
relation. These clusters of nearly degenerate states are clearly seen in figure 4, where we
plot logf (E) = log

∑
ε̃m6E |C0m

e,f |2 versus logE. In fact, not all excited states are included
in figure 4, only those corresponding to a single particle-hole excitation. In the largel

limit, all excited states with energiesπvFm/l with m = 1, 2 or 3, discussed in section 2,
correspond to single particle-hole excitations. However, multiparticle-hole excitations begin
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Figure 3. (a) Logarithm of the coefficient|C00
e | (empty bound state) as a function of chain
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3 ; 1
2 ; 3

5 and 4
5; the lines are best fits

to points with(l − 1) > 10 byC00
e (l, ν) = Ae(ν)N−βe(ν). (b) The same for|C00

f | (full bound

state). (c) and (d) Anderson exponentsβe (c) and βf (d). The curves areβe(ν) = ν2

2 and

βf (ν) = (1−ν)2
2 . (In the limit t/V = 0, ν = 1− δ/π .)

to appear atm = 4. We might try to extract the FES exponent from the slope at low energies
and largel, assuming that the neglected multiparticle-hole excitations do not make too large
a contribution close to the threshold. AssumingI ∼ ω−α in this region, then for small
E f (E) ∼ E1−α ≡ Eγ . The tangent of the curve should yield the FES exponent related
γ = ( δ̃F

π
)2, but actually it is significantly smaller.

The calculations of the intensities of the first few peaks (t/V = 0.1; figure 5) shows
that finite-size corrections to these amplitudes are significant forl ∼ 400. Thus we should
not expect to be able to obtain the FES exponent reliably this way even if the neglect of
multiparticle-hole excitations was valid.

In figure 5 and table 1 we show the ratio of thetotal amplitude of all peaks at excitation
energyvFπm/l, to the amplitude of the lowest peak (m = 0) for m = 1, 2, 3 for both a full
and an empty bound state,Re,fm , following the discussion in section 2.t/V = 0.1 and the
maximum length considered wasl = 400. The predictions forRe,fm from conformal field
theory in equation (2.22) are also shown in the figures and table. The finite-size corrections
to these ratios are quite large, but upon extrapolating in 1/l we obtain good agreement with
the CFT predictions in all six cases.

The finite-size corrections, at a fixed value ofl, are roughly proportional to
(
δ̃F
π

)2
, where

the effective phase shift in the presence of bound state isδ̃F = δF if the bound state is full,
andπ − δF , if it is empty [4, 6]. Thus CFT predictions in a finite system with a full bound
state are more accurate for low density than for high density, and the opposite for an empty
bound state.
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Figure 4. The normalized integral of intensity,̃f (E) = ∑Em6E
|C0m
e |2
|C00
e |2
∝ ∫ E0 I (ω)dω, versus

energy, for the case of empty bound state andt/V → 0. Density ν = 6
21; system size

(l − 1) = 21; 42; 84; 168. The best fits yieldγ = 0.037; 0.047; 0.054 and 0.060 respectively.
The CFT value is 0.082 (uppermost line). The clusters of almost degenerate excited states are
clearly seen (in one-pair approximation thenth excited state isn-fold degenerate). The dotted
line shows the direct diagonalization results by Eder and Sawatzky [14], fort = 1, V = 32, N =
6, (l − 1) = 21; γ = 0.021. Due to the normalization to|C00

e |2, the curves are offset in the
vertical direction; as the system size grows, the plateau heights are reaching the universal values
predicted by CFT for the ratios of subsequent excited peak amplitudes to the lowest energy peak
amplitude (see equation 2.22 and figure 5). Inset: FES exponent versus inverse chain length.
The cubic extrapolation to infinite system sizeγ (0) = 0.068 still falls short of the CFT value.

5. Sum rules and open questions

The Fourier transform of the core hole Green’s function, proportional to the photo-emission
intensity, can be written:

I (ω, ν) =
∑
n

|〈0|ñ〉|2δ(Ẽn − E0− ω) (5.1)

where|ñ〉 and Ẽn label all states of the system with the core hole potential turned on and
|0〉, E0 refers to the ground state without the core hole potential. Here we make the fact
explicit that I depends on the electron density (i.e.kF ). The states|ñ〉 can be classified
according to whether the bound state is full or empty and accordingly we may decompose
I (ω):

I (ω, ν) = If (ω, ν)+ Ie(ω, ν). (5.2)

Near a threshold,I (ω, ν) takes the form:

I (ω, ν) = F(ν)(ω − ω0)
−α(ν). (5.3)

So far, we have focused on the value of the FES exponent,α(ν). In this section we would
also like to consider the dependence of the amplitude factor,F on the density and the
behaviour ofI (ω, ν) away from the threshold. While most of this behaviour is clearly
non-universal, one might expect certain universal features to emmerge in the limitν → 0.
Our interest in this limit is motivated by the experiments on doped semiconductors [18].

To begin with we point out the existence of two sum rules. These apply very generally
to FES problems in arbitrary dimensions, without any particular assumptions about spherical
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Figure 5. (a) Relative weight of the first excited state peak in the hole propagator for different
densitiesN/(l − 1) = 0.1(0.1)0.6; t/V = 0.1. The horizontal lines mark the CFT predictions
(equation 2.22), curves are the least squares’ fits of the third order in 1/(l− 1), calculated from
the four points with smallest 1/(l − 1). Note that these curves are in a good agreement with
the data in a larger range of 1/(l − 1). (b) and (c): The same for the second and third excited
states.

symmetry or about the location of the core potential in the 1D case. It follows from the
completeness of the states|ñ〉 that I (ω) obeys the sum rule:∫ ∞

−∞
dω I (ω, ν) = 1. (5.4)

This implies that the integrated intensities from the states with full or empty bound state
obey:

If + Ie = 1. (5.5)
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Table 1. Relative weights of firstm excited peaks in the hole propagator compared with CFT
predictions of equation (2.22). The relative weights in the limitl →∞ are obtained from the
best fit to the finite-size values (figure 7),w(l) = c0 + c1/(l − 1) + c2/(l − 1)2 + c3/(l − 1)3

using the method of the least squares to determinec0,...,3 from the four points with smallest
1/(l − 1) for each graph.w(∞) = c0.

Empty
bound state ν 0.1 0.2 0.3 0.4 0.5 0.6

m = 1 (δF /π − 1)2 0.0123 0.0485 0.1071 0.1859 0.2827 0.3960
relative weight 0.0122 0.0483 0.1067 0.1851 0.2816 0.3944

m = 2 1
2(δF /π − 1)2

×(1+ (δF /π − 1)2) 0.0062 0.0254 0.0593 0.1102 0.1813 0.2764
relative weight 0.0062 0.0253 0.0589 0.1095 0.1802 0.2747

m = 3 1
6(δF /π − 1)2(1+ (δF /π − 1)2)
×(2+ (δF /π − 1)2) 0.0042 0.0174 0.0417 0.0803 0.1380 0.2207
relative weight 0.0041 0.0172 0.0412 0.0795 0.1367 0.2187

Full
boundstate ν 0.1 0.2 0.3 0.4 0.5 0.6

m = 1 (δF /π)
2 0.7906 0.6079 0.4525 0.3236 0.2193 0.1374

relative weight 0.7868 0.6051 0.4505 0.3222 0.2184 0.1369

m = 2 1
2(δF /π)

2

×(1+ (δF /π)2) 0.7078 0.4887 0.3287 0.2142 0.1337 0.0782
relative weight 0.7025 0.4853 0.3264 0.2128 0.1329 0.0777

m = 3 1
6(δF /π)

2(1+ (δF /π)2)
×(2+ (δF /π)2) 0.6584 0.4248 0.2687 0.1659 0.0989 0.0557
relative weight 0.6505 0.4202 0.2659 0.1642 0.0980 0.0552

Another useful sum rule can be derived by writingIf (ω, ν) in terms of the projection
operator,n̂B onto states in which the bound state is occupied:∫

dω If (ω, ν) =
∑
n

|〈0|n̂B |ñ〉|2 = 〈0|n̂B |0〉. (5.6)

We may write

n̂B = ψ†BψB (5.7)

whereψB annihilates the bound state electron.ψB can be expressed in terms of the operator
ψj which annihilates an electron at sitej and the bound state wavefunction,9B

j :

ψB =
∑
j

9B
j ψj . (5.8)

Thus:

If =
∑
i,j

9B
i 9

B
j 〈0|ψ†i ψj |0〉. (5.9)

In a d-dimensional continuum formulation this becomes:

If =
∫

ddr ddr′9B(r)9B(r′)〈0|ψ†(r)ψ(r′)|0〉. (5.10)
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At this point, it is convenient to Fourier expand the position-space annihilation operators.
The form of this expansion depends somewhat on the boundary conditions (in the system
without the core potential). In dimensionsd > 1 we generally consider a translationally
invariant system in which case:

ψr =
∫

ddk

(2π)d
eik·rψk. (5.11)

In this case, the sum rule becomes:

If =
∫

ddk

(2π)d
|9B(k)|2θ(εF − εk) (5.12)

where9B(k) is the Fourier transform of the bound-state wavefunction. Thek-integral is
only over states below the Fermi surface. This makes it clear thatIf vanishes asν → 0, and
approaches 1 asν → 1. Roughly speaking, when the density is small, there is a negligible
probability of an electron being near the origin when the core potential is switched on so
that the overlap of the unperturbed ground state with any state in which the bound state is
occupied goes to zero. In the opposite limit of high density there is probability near 1 of an
electron being near the origin. It is interesting to consider how rapidlyIf vanishes asν → 0.
If we assume that the dispersion relation and core potential are spherically symmetric, then
we may classify the bound state by its principal angular momentum quantum number,L.
At small k, 9B(k) ∝ kL, so

If ∝ k2L+d
F ∝ ν1+2L/d . (5.13)

In a 1D translationally invariant system with reflection symmetry the bound state can
be classified as being an even or odd function ofx. If ∝ ν for an even bound state orν3

for an odd bound state. When the potential is at the end of a 1D chain with a free boundary
condition,

9B(k) ≡
l−1∑
j=1

sinkjψB
j . (5.14)

Thus9B(k) ∝ k ask→ 0, soIf ∝ ν3.
The behaviour of the FES exponent,α atν → 0 follows, in some cases, from Levinson’s

theorem, which determines the behaviour of the phase shift ask→ 0. For an s-wave bound
state, or for a 1D problem with the impurity at the end of the chain, the phase shift
approachesπ at the bottom of the band when there is a bound state. Thus it follows, from
equations (2.17), (2.20) and (2.21) thatαf → 0 andαe → 1. Thus, If (ω) becomes a
step function near its threshold andIe(ω) becomes aδ-function. (α = 1 corresponds to a
constant Green’s function in the time domain whose Fourier transform gives aδ-function.)
ThusIe(ω, ν) approaches, in theν → 0 limit, the result for the empty system: aδ-function
of unit intensity. This follows since the ground state with no electrons is the same with or
without the core potential; it is simply the vacuum state. Thus we expect

Fe(ν)→ 1 (ν → 0). (5.15)

The step inIf (ω, ν) corresponds to electrons from the continuum falling into the bound
state after it is created. The probability for this process, and henceFf (ν), should vanish as
ν → 0.

We have been unable to understand, from general arguments, howFf (ν) approaches
0 or Fe(ν) approaches 1 asν → 0. More generally, we would like to know how the
functionsIe(ω) and If (ω) behave even away from the threshold asν → 0. In particular,
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it is interesting to ask whether there might be some sort of universal scaling form in that
limit. This behaviour is only weakly constrained by the above sum rules.

It is interesting to investigate these questions numerically. For a finite system,I (ω, ν)

is a sum ofδ-functions corresponding to the discrete finite-size spectrum. For a large
system the intensities of the first few peaks, with the bound state full or empty, will all be
proportional toFf (ν) or Fe(ν) respectively. This follows immediately from the conformal
transformation of section 2. Thus we may conveniently determineFf,e(ν) numerically, for
a large finite system, from the ground-state overlap (Anderson orthogonality calculation).
That is:

|〈0|0̃〉|2 = F(ν)
(π
l

)2x
. (5.16)

The resulting functions,Ff,e(ν) are plotted in figure 6 for the special tight-binding model
considered in the previous two sections, in the limitt/V → 0. These are obtained from
the intercepts of the curves in figure 3. As can be seen from figure 7, at smallν,

Ff (ν)→ 20ν2

Fe(ν)→ 1− ( 2
3)ν

2.
(5.17)

The former equation suggests the scaling hypothesis:

If (ω, ν)→ ν2f [(ω − ω0)/ν] (5.18)

for some scaling functionf . This is consistent with the sum rule since:∫ ∞
ω0

dω I (ω) = ν3
∫ ∞

0
dx f (x) ∝ ν3. (5.19)

In the ν → 0 limit, the threshold frequencyω0 approachesεB − ε0, the binding energy
measured from the bottom of the band. The functionf (x) must approach a constant at
the threshold,x → 0, consistent with the behaviour of the FES exponentαf → 0 as
ν → 0. At large frequencies the functionf must vanish sufficiently rapidly for the integral
to converge. Apparently, the scale over whichI (ω) varies is set byν ∝ vF . If this is also
the relevant energy scale for a translationally invariant 1D system, or a higher-dimensional
s-wave bound state, then we would expect the behaviour:

I (ω, vF ) ∝ f [(ω − ω0)/vF ] (5.20)

consistent with the sum rule. That is, the threshold peak has a fixed amplitude, but the
energy scale over whichI (ω) decreases scales to 0 asν → 0. (We can speculate that in
our model, due to the suppression of the wavefunction near the end of the chain, the extra
factor of ν2 appears in the expression forIf , which would be absent in the s-wave channel
of a higher-dimensional system, where the sum rule should yieldν instead ofν3.) It would
be interesting to investigate this behaviour in more general models.

For almost all values ofν we found thatFf,e are well described, for our special model,
by the functions

F?f (ν) = ν2(1−3√ν) F ?e (ν) = (1− ν)2(1−
3
√

1−ν) (5.21)

as shown in figures 6 and 7. (In two dimensions the dependenceFf (ν) ∼ ν2(1−νa) could be
expected from calculations based on the linked cluster approximation [27], but witha = 2,
not 1

3.) At very low densitiesFe(ν) is still well described by (5.21), as evident from (5.17)
and figure 6, whileFf (ν) approaches the 20ν2-dependence of (5.17) (see figure 7).
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Figure 7. FES amplitudes at low densities. In (b) stars represent the data not shown in
figure 6(b); the relationFf (ν) ≈ 20ν2, the upper broken curve, is clearly seen. The lower
dotted curve isν2, the asymptotics ofF?f (ν) at ν → 0.

6. Conclusions

We have investigated the Anderson orthogonality catastrophe and Fermi edge singularity in
photo-emission spectrum in a tractable 1D tight-binding model of spinless electrons, in the
case where the core potential produces a bound state.

We have confirmed the predicted relation between the scattering phase on the Fermi
surface, δ̃F , and the Anderson and FES exponents. We have calculated the ratios of
intensities of discrete absorption peaks for a finite system, using CFT and checked the
formulae at both primary and secondary thresholds numerically. We have found that the
higher-order finite-size corrections are roughly proportional toδ̃2

F and can be significant in
a system as large as several hundred sites. Thus, they might be observable in a mesoscopic
system. The CFT-based relation between the exponents and O(1/l)-term in the ground-
state energy shift was also confirmed. Using the model, we obtained the explicit density
dependence of the FES amplitude in the whole range ofν.
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Appendix A: Finite-size energy

In this appendix we wish to explicitly demonstrate the formula relating the finite-size
correction to the ground-state energy difference to the phase shift at the Fermi surface.
At the same time we will expose a subtlety in the definition of the O(1/l) term in this
energy difference. This ground-state energy difference contains a dominant term of O(1).
This is non-universal, depending on the ultraviolet cut-off in the Dirac fermion theory. It
must be subtracted correctly to determine the universal O(1/l) correction. To be concrete,
we consider a tight-binding chain ofl − 1 sites,j = 1, 2, 3, . . . , l − 1 with free boundary
conditions,N electrons and a scattering potential,Vj , localized nearj = 0.

H = −
l−2∑
j=1

(tψ
†
j ψj+1+ hc+ Vjψ†j ψj ). (A1)

WhenVj = 0 the single particle eigenstates are sinkj . A simple way of determining the
allowed wavevectors,k, is to imagine adding two ‘phantom sites’ atj = 0 andj = l and
then imposing the boundary condition:

ψ0 = ψl = 0. (A2)

The Fourier expansion ofψj in terms of creation and annihilation operators then involves
sin(kj) with:

kn = πn/l n = 1, 2, 3, . . . , l − 1. (A3)

The ground-state energy forV = 0 is:

E0 =
N∑
m=1

ε(km) (A4)

with ε(k) = −2t cosk. In fact, this discussion does not depend on the form ofε(k) and can
be applied immediately to a more general Hamiltonian with longer range hopping provided
that the boundary condition of equation (A2) applies. The only property ofε(k) that we
will use is that its derivative vanishes atk = 0.

In the l→∞ limit, the Fermi wavevector is

kF = π lim
l→∞

N/l. (A5)

For a finite system, there is an ambiguity of O(1/l) in the definition ofkF since it may be
chosen anywhere betweenπN/l andπ(N + 1)/ l. It turns out to be convenient to chose it
to lie exactly halfway between theN th andlth level:

kF ≡ π(N + 1
2)/ l. (A6)

This gives the model an approximate particle-hole symmetry, in the vicinity of the Fermi
surface. (Only at half-filling does this particle-hole symmetry become exact.) We regard
kF as being held fixed asl is varied, for purposes of determining the term of O(1/l) in the
ground-state energy. Thus the quantity(N + 1/2)/ l must be held fixed. In practice, for
numerical simulations, this is not particularly more nor less difficult than holding fixed the
actual density,N/(l − 1). For instance, to obtainkF = π/4 we may chose the number of
sitesl − 1= 4N + 1 for an arbitrary positive integerN .
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The continuum limit Dirac theory is defined by only keeping wavevectors near±kF ,
writing:

ψj ≈ e−ikF jψL(j)+ eikF jψR(j) (A7)

where ψL,R are left- and right-moving Dirac fields. The boundary conditions of
equation (A2) imply:

ψL(0)+ ψR(0) = 0

e−ikF lψL(l)+ eikF lψR(l) = 0.
(A8)

Using equation (A6) the last equation gives:

ψL(l)− ψR(l) = 0 (A9)

corresponding to the ‘same’ boundary conditions at both ends as discussed in section 2.
kF was chosen in equation (A6) in order to obtain this boundary condition on the Dirac
fermion.

Including the scattering potential,Vj , the single-particle eigenstates still become
asymptotically plane waves, sin[k̃j + δ(k̃)] (at large distances compared with the range
of V ), whereδ(k̃) is the phase shift. Thus, the allowed wavevectors are now:

k̃n = kn − δ(k̃n)/ l (A10)

with kn ≡ πn/l. It is important to note that the argument ofδ in equation (A10) isk̃n, not
kn. Thus, to O(1/l2), we may write:

k̃n ≡ f (kn) = kn − δ(kn)/ l + δ′(kn)δ(kn)/ l2. (A11)

The ground-state energy can thus be written:

E0 =
N∑
n=1

ε[k̃n]. (A12)

This can be evaluated using the Euler–MacLaurin expansion:

N∑
m=1

F(m− 1
2) =

∫ N

0
dx F(x)− 1

24[F ′(N)− F ′(0)] +O(F ′′). (A13)

Setting:

F(n− 1
2) = ε[f (πn/l)] (A14)

where the function,f is given by equation (A11), we obtain the convenient result,

F(N) = ε[f (kF )]. (A15)

Thus, to O(1/l):

E0 =
∫ N

0
dn ε{f [π(n+ 1

2)/ l]} − vFπ/(24l) (A16)

where

vF ≡ ε′(kF ) (A17)

and corrections of O(1/l2) have been dropped. Now it is convenient to change integration
variables to:

k = π(n+ 1
2)/ l (A18)
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giving:

E0 = l
∫ kF

0

dk

π
ε[f (k)] − vFπ

24l
. (A19)

Here the lower limit of integration has been shifted byπ/2l. This is justified sinceε(k) is
quadratic atk → 0, producing only corrections of O(1/l2) to E0. Using equation (A11)
and expanding to O(1/l) we obtain:

E0 = l
∫ kF

0

dk

π

[
ε(k)− ε

′(k)δ(k)
l

+ ε
′′(k)δ2(k)

2l2
+ ε

′(k)δ′(k)δ(k)
l2

]
− vFπ

24l
. (A20)

Integrating by parts, and usingε′(0) = 0, we finally obtain:

E0 = l
∫ kF

0

dk

π
ε(k)− 1

π

∫ εF

ε0

dε δ(ε)+ πvF
l

{
1

2

[
δ(kF )

π

]2

− 1

24

}
+O

(
1

l2

)
. (A21)

Here ε0 ≡ ε(0) and εF ≡ ε(kF ). The first term of O(l) is the bulk ground-state energy.
The second term of O(1) is a well known result referred to as Fumi’s theorem. Note that
these terms depend onε and δ over the whole band. On the other hand, the final term
of O(1/l) depends only on data right at the Fermi surface, namelyvF and δ(kF ). The 1

24
term is the well known conformal field theory result for open boundary conditions. The
additional [δ(kF )/π ]2 term gives the effect on the ground-state energy of changing the
boundary conditions. This formula can be checked for the nearest-neighbour model, with
ε(k) = 2t cos(k), and free boundary conditions. The exact ground-state energy is given by
a geometric series:

E0 = t − t sinkF
sin(π/2l)

= l

π
vF + t − πvF

24l
+O(1/l2) (A22)

with vF ≡ 2t sinkF .
We note that adopting a different definition ofkF , such asπN/(l−1) in the 1D model,

corresponds to adding ak-independent term to the phase shift ((ν − 1
2), whereν is the

density, in this case). Equation (A22) still holds, when written in terms of this redefined
phase shift. This discussion was given for the case of a 1D tight-binding model with free
ends but it can easily be generalized, for example to the s-wave sector of a 3D spherically
symmetric continuum model with a vanishing boundary condition on the surface of a sphere
of radius l. With an appropriate definition ofkF (essentially defining, to O(1/l) what is
held fixed asl is varied), equation (A22) is again obtained.

We can easily generalize equation (A22) to calculate the energy of a state withn extra
electrons added, withn held fixed asN and l→∞. This gives:

En = E0+
n∑

m=1

ε[kF − δ(kF )/ l + π(m− 1
2)/ l]

= E0+ nεF + (vFπ/l)
n∑

m=1

(m− 1
2 − δ(kF )/π)+O(1/l2). (A23)

Hence

En = l
∫ kF

0

dk

π
ε(k)− 1

π

∫ εF

ε0

dε δ(ε)+ nεF + πvF
l

{
1

2

[
n− δ(kF )

π

]2

− 1

24

}
+O

(
1

l2

)
.

(A24)
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Appendix B: Dispersion law and wavefunctions in a 1D tight-binding chain

Here we calculate exactly the phase shift, finite-size spectrum, eigenstates and overlaps for
the 1D tight-binding model with an impurity potential at one end, given in equation (3.1).

It can easily be seen that the eigenstates can be written exactly in the form:

9j ∝ sink(j − l). (B1)

This wavefunction trivially satisfies the lattice Schrödinger equation (for arbitraryk) at all
sites 2, 3, . . . , l − 1, with:

ε(k) = −2t cosk. (B2)

The Schr̈odinger equation for the first site determines the allowed values ofk:

−t92− V91 = ε91. (B3)

Inserting equation (B1) and (B2), we obtain:

sink(l − 1)

sinkl
= t

V
. (B4)

For sufficiently largeV/t there is also a bound state with the wavefunction:

χj ∝ sinhκ(l − j) (B5)

whereκ > 0 so that the wavefunction decreases whenj increases. This has the energy:

εB = −2t coshκ. (B6)

Again the Schr̈odinger equation is automatically satisfied (for anyκ) at all sites except the
first which gives the condition determiningκ:

sinhκ(l − 1)

sinhκl
= t

V
. (B7)

For l � 1, this gives:

e−κ = t/V . (B8)

Sinceκ must be positive, we see that there is only a bound-state solution forV > t . In this
case:

εB = −(V + t2/V ). (B9)

For the continuum states we may calculate the exact phase shift, defined by the form of the
wavefunction forl � 1:

9j ∝ sin[kj + δ(k)]. (B10)

From equation (B1) we see that:

−kl = δ(k)+ πn (B11)

for some integern, in the limit l→∞. Substituting this into equation (B4), we obtain:

sin[δ(k)+ k]

sin[δ(k)]
= t

V
. (B12)

This gives:

δ = arctan

[
sink

t/V − cosk

]
. (B13)
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We now consider in more detail the spectrum of the finite system, ofl − 1 sites. With
no potential, there arel − 1 band wavefunctions with:

kn = nπ/l n = 1, 2, 3, . . . , (l − 1). (B14)

Including the attractive potential, we see from equation (B7) that there is a solution of the
form sinhκ(j − l) for t/V < 1− 1/l. We label this solutioñε1 and9̃1. For this range of
t/V equation (B4) has onlyl − 2 solutions,k̃2, k̃3, . . . , k̃l−1. In particular, forV/t →∞,
thesel − 2 solutions become:̃kn = (n − 1)π/(l − 1), corresponding to a chain with free
boundary condition at both ends andl − 2 sites.

The normalization of the band states can be calculated exactly in terms ofk̃ using:

l−1∑
j=1

sin2 k(j − l) = 1

2

[
(l − 1)− sink(l − 1) coskl

sink

]
. (B15)

Similarly the normalization of the bound state is determined by:

l−1∑
j=1

sinh2 κ(j − l) = −1

2

[
(l − 1)− sinhκ(l − 1) coshκl

sinhκ

]
. (B16)

The overlaps of band wavefunctions with and without the potential can be calculated
similarly using:

l−1∑
j=1

sink(j − l) sink̃(j − l) = sink(l − 1) sinlk̃ − sinlk sin(l − 1)k̃

2[cosk̃ − cosk]
. (B17)

If k andk̃ are allowed wavevectors corresponding to potentialsV1 andV2 respectively, then
using equation (B4),

l−1∑
j=1

sink(j − l) sink̃(j − l) = (V2− V1) sink(l − 1) sink̃(l − 1)

2t [cosk̃ − cosk]
. (B18)

Thus we obtain the extremely useful result:

〈9̃|9〉 = (V2− V1)C(k̃)C(k)

ε(k)− ε(k̃) (B19)

whereε(k) = −2t cosk is the band energy and

C(k) ≡
√

2 sink(l − 1)√
(l − 1)− sink(l − 1) coskl/ sink

. (B20)

The corresponding result involving the bound state immediately follow upon replacingk̃ by
iκ. ε(k̃) simply gets replaced byεB ≡ −2t coshκ andC(k̃) gets replaced by

CB ≡
√

2 sinhκ(l − 1)√
sinhκ(l − 1) coshκl/ sinhκ − (l − 1)

. (B21)

To calculate the overlap of theV = 0 ground state with an arbitrary state withV 6= 0, we
simply setV1 = 0 andV2 = V in the above formula. This remarkably simply form for the
overlaps of single-particle wavefunctions leads to enormous simplifications in the calculation
of the overlap of the Bloch determinant multiparticle states, as shown in section 4.
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