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Abstract. Fermi edge absorption singularities (FES) are studied using a combination of
conformal field theory (CFT), an exact sum rule and numerical work on a tight-binding model
which is shown to exhibit remarkable simplifying features. The relationship between FES and
the Anderson orthogonality exponent is established in great generality, using CFT, including the
case where the core hole potential produces a bound state. Universal results on the absorption
intensity in a finite-sized sample are obtained. Various predictions are checked numerically and
the evolution of the absorption intensity with electron density is studied.

1. Introduction

A theoretical understanding of the Fermi edge singularity (FES) in x-ray absorption in
metals and of the related Anderson orthogonality catastrophe dates back to the 1960s [1-10].
Nonetheless, this remains an active area of research today, in part because of theoretical and
experimental work in systems of reduced dimensionality where strong correlation effects
may play an important role [11-18]. In particular, a new and very general theoretical
approach has been developed, based on conformal field theory [12].

Recent experiments have studied optical absorption threshold singularities in modulated,
doped semiconductor layered structures [17,18]. These behave somewhat like two-
dimensional metals with a continuously tunable electron density. The potential produced
by the valence band hole is expected to produce a bound state (exciton) due to the well
known theorem that an attractive potential in two dimensions always has a bound state.
Many interesting issues are raised by these experiments which have not yet been adequately
addressed theoretically. In particular, it is possible to study the behaviour of the threshold
singularities as the electron density goes to zero. In some cases an additional threshold
corresponding to a negatively charged exciton (two conduction electrons bound to a valence
hole) is observed. Strong correlation effects may play a crucial role in this case and the
usual Fermi liquid approach may need to be modified.

The present work addresses several issues in this field, within the usual Fermi liquid
framework. The case of a core potential producing a bound state is considered, as is the
behaviour of the threshold singularities as a function of electron density. Furthermore,
we consider the nature of the absorption intensity for a simple model of a finite sample.
The techniques employed in this paper are a combination of conformal field theory (CFT)
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methods, an exact sum rule and numerical work on a tight-binding model which exhibits
remarkable simplifying features making it feasible to study very large systems.

The conformal field theory method of [12] is extended to the case where there is a
bound state. A very simple and general proof of the exact correspondence between the FES
exponent and the orthogonality exponent is given. The absorption intensity near threshold
for a finite system is shown to have a simple universal form, using conformal field theory.
An exact sum rule is introduced which determines the ratio of absorption intensities for the
two cases where the core bound state is empty or full.

Numerical work on the simple tight-binding model is used to check the validity
of Anderson’s formula relating the orthogonality exponent to the phase shift at the
Fermi surface, the Nogres—De Dominicis, Combescot—Nem®s formulae [2, 6] for FES
exponents including the bound-state case, and the formulae derived here for the absorption
intensity in a finite system. In addition, this numerical work, together with the sum rule, is
used to study the behaviour of the absorption intensity as a function of density.

The tight-binding model we employ can be considered as one spin channel of the one-
dimensional Hubbard open chain (i.e. with independent boundary conditions on each end)
in the non-interacting limit. The latter system is completely integrable, as was shown by
Bethe Ansatz techniques [19, 20]. This allows one to obtain finite size corrections to the
spectrum and thus FES exponents, including the case when the bound states are formed at
the boundary [21-23], but the treatable expressions for the many-particle overlaps (section 4)
do not hold in the presence of interactions, as far as we know.

Some of the new conformal field theory results were briefly described in [24].

2. Conformal field theory approach

An approach based on boundary conformal field theory [12, 24] provides a unified view of
the problem. As usual, we start from the simplest possible model [2],

H= Xk: exclee +b'h ; Viwclcw + Eob'b. (2.1)

Here the band of spinless, non-interacting electransc) is scattered by the core hole
potential Vi . The core hole(b!, b) is dispersionless. It is created and annihilated
instantaneously (by irradiation), and the reaction of the band electrons on this instantaneous
perturbation constitutes the FES and Anderson orthogonality effects.

In the low-energy limit, the system is mapped onto e+ 1)-dimensional Dirac
fermions defined on a ray > 0 with a scattering potentidl' at the origin. (This can be
done by assuming spherical symmetrgpandV; ;- and considering only s-wave scattering;
generalizations to other cases are straightforward.) The following discussion applies, with
minor modifications, to either an s-wave projected three-dimensional (3D) problem or to
a problem defined priori in one-dimension. We will henceforth generally consider the
one-dimensional (1D) case. We could consider, for example, a 1D tight-binding model,
defined on the positive half-line, with free boundary conditions and a potential localized
nearx = 0. See appendix A for a detailed discussion of this model. The corresponding
boundary condition in the low energy Dirac theory is:

¥ (0) = ¥z (0). (2.2)

The role of the scattering potential in the theory here is to impose an effective boundary
condition on the low-energy degrees of freedom, relating the left and right movers:

Yr(0) = ¢y, (0). (2.3)
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Here §(kr) is the phase shift at the Fermi surfagegdependence of the actual phase shift
is irrelevant at low energies. The action of the hole creation operatothus reduces to
that of a primary boundary condition changing operatdr, The Green’s function (hole
propagator) of this operator in a half plane=r +it,r > 0, is

G(t1 — 1) = (b(r)b'(12)) = (A; 0|0(11)O(12)|A; 0) = . (24)
(1— 1)

Herex is the scaling dimension aP, and|A; 0) is the ground state of the infinite system
(full Fermi sea) without scattering potential. Physically, the Green’s function is directly
related to the absorption intensity in the case of photo-emission,

I (w) / dr €0 (b(1)b' (0)) o (w — wp) ™ (2.5)

where wg is the threshold frequency. Evidently, the (FES) exporerdand the scaling
dimension are related via

y=1l—a=2x. (2.6)
Looking for finite-size effects, we conformally map the half plane onto the strip,

I > r > 0 by using the transformation = /e"*/!. In a bosonic system this automatically
gives the same boundary condition at 0 @ndHowever, for fermions it gives:

¥.(0) = yr(0) Vi) = —yr(@). (2.7)
This follows because the fermion fields transform as:

Y — (dz/dw)?y,

Yk = (dz*/dw*) Py,
At w=x+il,

(dz /dw)¥?/(dz* /dw*)V/2 = —1. (2.9)
This transformed problem corresponds to considering a 1D model defined on a finite line,
0 < x < I, with the impurity potential near = 0 and an appropriate boundary condition at
x = [. Alternatively, the 3D s-wave projected system is now defined inside a finite sphere
of radius/ with an appropriate boundary condition on the surface of the sphere. For a

discussion of this boundary condition and more details, see appendix A.
We find for the Green’s function on the strip

(2.8)

1

(% Sinh%(ul — Uy)

(AA; 01O (u1)O(u2)|AA; 0) = (2.10)

)Zx
|AA; 0) being the unperturbed ground state of the system of lehgthith the ‘same’
boundary conditionA, given by equation (2.3) at both ends.

In equation (2.10) we can either Taylor expand sinh in the lumit; — u2)/l < 1,
or insert a complete set of state$B; m) (eigenstates of the system with the scattering
potential—boundary condition ‘B'—present), and obtain the relation

(z)zx e (14 2ve ™ 4 z&+h e
Ji 2
22+ D20 +2) _srwrwy . )

e
+ 6
AB_

= 3 [(AA; 0[O AB; m)PelEa"~E8 s ed, (2.11)
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If for the operatorQ© the first non-vanishing matrix element is with the ground state
of the perturbed systemd B; 0), then for the overlap of the two ground states (Anderson
orthogonality catastrophe)

I{AA; O|O|AB; 0)| = (%) (2.12)

The Anderson orthogonality exponent coincides with the scaling dimension the other
hand, x is given by the @1/[)-contribution to the ground-state energy shift due to the
perturbation [12, 24]

I
x = ;[E{;B — E{M. (2.13)

Here it is implicitly assumed that this energy difference consists of a term{fi@only, as
would follow from conformal invariance. As discussed in appendix A there will in general
also be a term of ) which must be subtracted.

A simple way of determining the Fermi edge expongrand the orthogonality exponent
x, is thus to calculate the /1 finite-size correction to the difference in ground-state
energies of the system with and without the scattering potential. The term of O(1) is
non-universal (cut-off dependent) while the higher-order terms contain the corrections from
various irrelevant operators. On the other hand, we expect the tern{1gf YO which is
determined only by the immediate vicinity of the Fermi surface, to be universal and to give
the desired FES and orthogonality exponents. In fact, this result remains true including
bulk Coulomb interactions in one dimension [12]. Thus calculation of tlit/Q term in
the ground-state energy difference gives a very simple way of determining the FES and
orthogonality exponents in great generality. This calculation is given in detail, for a 1D
tight-binding model, in appendix A. The conclusion is:

1 8(kp)
5
While various derivations of this result, both for the FES exponent and for the
orthogonality exponent have been given before, this one has certain distinct advantages.

The original derivation of the orthogonality exponent by Anderson made a variety of
approximations, including Taylor expanding certain quantities in powers of the phase shift.

The derivation of the FES exponent in [2] also initially assumed a séfa}) and then
argued for the generality of the result by some fairly subtle consistency arguments. The
bosonization derivations start with a bosonized Hamiltonian written in termé(igf)
whereas a naive bosonization in fact only picks up the Born approximatidn lioear
in the scattering potential. It is expected that eliminating the high-energy modes somehow
renormalizes this parameter in the bosonized Hamiltonian, turning it into the true phase
shift. Once the assumption of conformal invariance is made, it is very straightforward
to demonstrate that it is precisely the phase shift at the Fermi surface which enters the
exponents, by an explicit calculation of the ground-state energy, as given in appendix A.
We note that once the bosonized Hamiltonian is assumed, the results for the strip can be
obtained by a mode expansion of the boson field. This, of course, gives the same result
obtained more simply by the conformal transformation.

Another advantage of this somewhat abstract approach to the problem is that it can be
immediately generalized to the case where the core potential creates a bound state. The
Green’s function can then be presented as a sum of two terms:

1% (2.14)

X =

G@) = G.() + Gr(u) = Y_ |(AA; O|O|AB: m; e) |Pe el
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+ Y 1(AA; 0|OIAB; n; f)[Pe ES—E8"n (2.15)

where the first sum is taken over all staids3; m; ¢), where the bound state is empty, and
the second over the statedB; n; f) where it is full. These two terms give rise to two
peaks in the absorption rate, separated by the binding enargys |Eg|. Introducing the
occupation number of the bound staig,

Gu) = ([bw)ig@)][iz0b (0)]) + ([bu)(L — ip@)][(1 - iz 0))b(0)]). (2.16)

In the long-time limit we may calculate each of these terms separately using the boundary
conformal field theory approach. The bound state is associated with a finite binding energy,
Ep and an exponentially decaying wavefunction. Thus, it has no direct effect on(ihé)O
terms in the energies. Therefore we expect the above formulae to immediately apply for
the first threshold where the bound state is filled, with the exponent:

2
xp = % [5(:)} . (2.17)

When the bound state is empty, the only change in the low-energy physics is that one
additional electron is raised to the first unoccupied state above the Fermi surface. This has
the wavevector:

12

We may regara[1— 7] as a different boundary condition changing operator which creates
one additional low-energy electron, in addition to producing the new boundary condition of
equation (2.3). The @/I) term in the ‘ground-state’ energy difference in the case of the
empty bound state is, from appendix A:

k=kp+ " [1 - 5(@} . (2.18)

1[s 2
Ey— Eo=vr_ > [ (€r) _ 1} . (2.19)
T

Thus the orthogonality exponent giving the overlap between the unperturbed ground state
and the ‘ground state’ with the empty bound state is:

1[s 2
Xo= = [ €r) _ 1] . (2.20)
2| «
The FES exponents for the two thresholgsanda, are given by:
o =1—2x a. = 1— 2x,. (2.21)

By merely computing the ground-state energy, rather than attempting to compute the
exponents directly, we have finessed the problem of attempting to bosonize the theory
with the bound state. We note that these results agree with Combescot areteS[Bi

and Hopfield [4]. The present derivation seems quite closely related to the observation of
Hopfield that the FES exponent measures the amount of charge pulled in from infinity by
the bound state.

The conformal mapping from the plane to the strip establishes in a simple way
the relationship between the FES exponents of the infinite system and the orthogonality
exponents and energies of the finite system. In fact this mapping provides considerably more
information. Let us imagine a rather artificial situation where a core hole is instantaneously
created at the end of a finite 1D system. (Equivalently, we could consider an artificial
situation where it is created at the centre of a finite sphere.) In this case the absorption
intensity, I (w) of equation (2.5) becomes a seriesseffinction peaks, as we see by Fourier
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transforming equation (2.11). The peaks occuwat= EA8 — E} = n(x +m)/I, the
energies of excited states of the perturbed system measured from the unperturbed ground-
state energye{*. (The neglected term of @) just shifts the threshold byy.) It follows
from (2.11) that the ratio of theith peak to the zeroth one depends onlyxon
[(AA; O|O|AB; m)|? 2x(2x +1)(2x+2)...(2x +m — 1)
I{AA; O|O|AB; 0)|2 m! '
Note that from equation (2.11), each of these peak intensities scales with length the
same way as the zeroth peak does, the latter was considered by Anderson and is given
by equation (2.12). The ratios of peak intensities are length-independent pure universal
numbers, determined only Bykr).
In fact, each of these peaks corresponds, in general, to several different states with
energies that are degenerate, td ). These are simply multiple particle-hole excitations
of the free fermion system, with a dispersion relation which is linearized and a phase shift
which is assumed to bg-independent, near the Fermi surface. A general particle-hole
excitation may be constructed by first raising electronsm levels, then raising:,,_1
electronsn — 1 levels, etc. The energy relative to the ground state of this state is:

(2.22)

T o0
EAB _ EQB = 7 > npp. (2.23)
p=1

The first excited state hag, = 1, n, = 0 for p > 1. The next degenerate pair of states
hasni = 2 ornp = 1 (with the othem, = 0). The third set of excited states is threefold
degenerate witli; = 3 orny = np = 1 orng = 1 (and the othen, = 0 in all cases).
Corrections to the linear dispersion relation and variatios @) nearky will split these
energies by amounts of (©//2). The simple prediction obtained here from a conformal
transformation does not give the amplitude of each peak separately, but only the sum of
amplitudes of all peaks at a given energy, where energy differenceglgiq) are ignored.

This new finite-size result interpolates, in a sense, between the orthogonality exponent
and the FES exponent. Considering the largdimit of equation (2.22) we find that the
intensity decays as =29, recovering the FES exponent.

This result immediately applies to the peaks corresponding to the bound state being filled
or empty, provided that the appropriate orthogonality exponeptand.zx, of equation (2.17)
and (2.20) are used.

3. One-dimensional tight-binding model

An evident discrete counterpart to the system (2.1) in its 1D version is the system of spinless
fermions on a finite 1D chain with nearest-neighbour hopping, free boundary conditions and
an impurity potential which can be switched on/off at the first site:

H = Ho+ blbH,

-2
Ho=—t Y (Wi + v 490 (3.1)
i=1
Hy= —Vylyn
Here we chosé&’ to be positive in case of an attractive core potential, and also ¢chese
This model is very amenable to large-scale numerical work with a minimum of effort.
Not only can the single particle energies and wavefunctions for finiie found exactly
in a simple form, but, more remarkably, the overlaps of the single particle wavefunctions
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corresponding to different values of the potentil, obey an exact factorization. This
enormously simplifies the calculation of the overlap of the many-particle, Bloch determinant,
wavefunctions. This can then be expressed by the Cauchy determinant formula, used as an
approximation by Anderson [10] in his classic paper on the orthogonality catastrophe. The
many-body overlaps are easily evaluated numerically and in some limits analytically (e.g.
in the narrow band limity; — 0). As a result, chains of lengths up to few thousand sites
are easily handled on a workstation using the standard ‘Mathematica’ package. The crucial
factorizability of one-particle overlaps disappears under any other position of the scattering
potential.

The details are given in appendix B; here we just summarize a few salient features,
beginning with the infinitel limit. This model has a band of eigenstates with exact
wavefunctions:

V; o sinfkj + 8(k)] j=2123,.... (3.2)
The dispersion relation is:
€(k) = —2t cosk. 3.3)

The phase shift is given by:

ink
§ = arctan Sk . (3.4)
t/V — cosk

Note that at the bottom of the band,—~ 0,5 — 0 for V < ¢, when there is no bound state,
buts — &, for V > ¢t when there is a bound state, as required by Levinson’s theorem. As
k ranges over the whole band, from 0400 < §(k) < m/2forV <, and 0< 6(k) < 7

for V. > t, as shown in figure 1. FoV > ¢, (k) ~ = — k. There is one bound state, if

V >t only, with:

Eg=—(V+12/V). (3.5)

Note that this approaches the bottom of the ban#, asV — r, where the bound state
disappears. The exact bound-state wavefunction is:

\Ilf x e (3.6)
with

K =In(V/1). 3.7)

For finite [, there is a set of wavefunctions:

WI' o sink, (j — 1) (3.8)
with the allowed wavevectors determined by:

sink(l — 1) t

ek v (3.9
Fort/V > 1—1/1 there ard — 1 solutions of equation (3.9), which we label

ki, ko, ..., ki_1. (3.10)

Fort/V < 1—1/1 there are only — 2 such wavefunctions, which we label2 ..., (- 1)
and an additional wavefunction:

W} o sinhie(j — 1) (3.11)

with « the solution of:
sinhk({ — 1) t
— = 3.12
sinhkl \% ( )
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Figure 1. Phase shift in the 1D tight-binding model versus densit¢ lim;_o N/(l — 1) =
kp/m ,att/V =0,0.050.01,...,2, 34,5 The dotted line;/V = 1, separates regions with
and without bound state.

In the caseV = 0, the wavevectors are:

ky =mn/l n=123...,0-12. (3.13)
From equation (3.9) we see that, in the liWifr — oo, the wavevectors are:
ky=(n—Dr/(l -1 n=234,..(1-1 (3.14)

corresponding to a chain af — 2) sites and a free boundary condition. The lowest
wavefunction (bound state) becomes localized at 1 in this limit with eigenvalue-V.

The overlaps between the unperturbgd,and perturbedy,, one-particle states assume
the special form, reminiscent of the first-order perturbation theory, but actually exact
(appendix B):

. C (k) C (K
gy = —y CEm)C ) (3.15)
€ (k) — €(ky)
4 kn
[ty = —y ) (3.16)
€ — €(ky)
where
2sinl — Dk
C(k) = v2sind — | (3.17)
/(I —1) —sin(l — 1)k coslk/ sink
2si -1
. V2sinhi — 1)« ' (3.18)
/SINf(l — 1)k coshk/sinhk — (I — 1)
4. Calculation of hole propagator. Comparison with the CFT predictions
The Green'’s functiorG (1) is determined by the set of matrix elements,
[(AB; m|O|AA; 0)| — (Dppe, f|®o) = C (4.1)

between (perturbed and unperturbed) many-body states of the system and corresponding
excitation energiesj\¢,... s (we note explicitly whether the bound state if present is filled
(f) or empty ¢), and label bym’ the appropriate excited states of the band).
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When there aréV spinless non-interacting electrons in the system, the many-particle
wavefunction is av x N Slater determinant

1
= 7 det(w,"). 4.2)
Here\IJ(”") is an appropriate one- partlcle eigenfunction of the sigtéaken at the coordinate
of the ath particle,a, b =1, 2, .
The overlap of two such states is a determinant

(P, @) = }: > det(F") detw™) = det(F™, w™)).  (4.3)
JN
The remarkable form of the one-patrticle overlaps (3.15), (3.16) allows us to apply the
Cauchy formula [25] in order to calculate the determinant (4.3):

det( 1 ) — Hm>n(am - an) l_[m>n(bm - bn) . (44)
ay + bn l_[m,n (am + bn)

Unlike the situation considered by Anderson [10] and Combescot ancidszf6], in our
model the special form of the overlaps is an exact result, and not the consequence of the
linearization of the dispersion law close to Fermi surface.

We begin by calculating”?°, the overlap of the ground states of the system with and
without the core potential, which yields the Anderson exponent (2.12). In the corresponding
determinant (4.3) both ‘old’ and ‘new’ indices run framm = 1 ton, m = N. (That is, in
the ‘new’ state there is one bound electron and— 1) electrons in the band, and e
pairs.) The other interesting overlap?, corresponds to the situation when the bound state
in the ‘new’ system is empty, and aN electrons are in the band, occupying the lowest-
lying states (still noe—h pairs): n = 1,...,N, butm = 2,..., N + 1. It should yield
the ‘empty bound state’ Anderson exponent, which according to general considerations [4]
should be(1 — %)?, as distinct from the ‘full’ value(’2)2. Using the Cauchy formula, we
find

~ N
1_[m>m 1(6"1 Gm/) Hn>n’=l(en/ - E’l)

CP =W [ [c@n [ Cn) (4.5)
! l_[ ;[[ Hm:l Hf:l(gm — €n)
N+1 N+1 ~ N _
e = )" [] ]_[ € ey LLmzm=2Cn = &) o= & = ) 4.6)
n=1 l—lm 2 n= 1(6'" 6")
and for their ratio:
R— C®  Clkyy) ea—é ﬁ EN+L— Em Tq Em — 51. @.7)

CP Cp  Enii—€1, 5eNt1—€n b én— @
Expression (4.7) is easily calculated for rather-large systems, since it involves the number
of operations only of order. The approximate values for the energigs can be accurately
calculated as a perturbation seriestjrV <« 1 (see appendix B). If the above predictions
are valid, then the ratio should depend on the system size as
5p 2_7 _sp 2 ,
Roc (-t (F)=30-%) _ -4, (4.8)

Here§r is the phase shift at the Fermi surfage,= wv.

The results are shown in figure 2/¢ = 0.1 and 001) for (/ — 1) 4000 As is clear
from the figures, the ratio as a function loét fixed density = ;=; behaves as

R(l;v) o< (I — 1) (4.9)
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t/V=0.1 t/V=0.01
7 7
6 (@ 6 (@
5 5
z * T 4
s 3 c 3
2 : )
1 / 1
SRS
0 0
0 2 4 6 8 1 2 3 4 5 8
In(1-1) In(I-1)
0.5 0.5
b d
0.4 ®) 0.4 @
0.3 0.3
NS NS
0.2 0.2
0.1 o1
0 0
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

v ' v

Figure 2. (a) Logarithm of ratio|R| = |C°°/C}’0\ as a function of (even) chain length— 1)
fort/V = 0.1 andv = 3;: 2; 3; &4 and ;5;; the lines are best fits to points with— 1) > 10
by In|R| = A+ ¢In(l —1); (b) Exponent;(v) The curve |s(%_01) — izL (c) The same as
in (@) fort/V =0.01 andv = 2 5; 11 and 101 (in the latter three cases the length- 1) was

chosen to be odd); the lines are best fits to points With1) > 10 by In|R| = A+ ¢ In(l —1).

S(v; —7001) 1
(d) Exponent; (v). The curve is—V_—— — 3.

where indeed (the least squares best fit parameters are shown in figure captions):

.t
ey~ iy 1 (4.10)
b4 2
for @ ~ % — v, as seen in figure 1.
Calculation of the coef‘ficienté‘OO themselves is more time consuming. We calculated
C2° and CY° in the limit7/V — 0 for (I — 1) < 400. The results are shown in figure 3.
The matrlx elements dependence on size and density are accurately described by

CO (1, v) = A, ()1 — ) (4.11)

thus confirming the validity of the original Anderson’s result [10] in the case of binding
core potential and arbitrary electronic density.

Turning to the contributions of the excited staté§ we must remember that in the
model, the degeneracy of energy levels in the CFT formula (2.15) is lifted. Therefore when
checking equation (2.22), we calculate the ratjo§, [C2%|?/|C2% |2, where the sum is
extended over the excited states which would be degenerate in the case of linear dispersion
relation. These clusters of nearly degenerate states are clearly seen in figure 4, where we
plot log f(E) =log} ; . |C2"}|2 versus logk. In fact, not all excited states are included
in figure 4, only those corresponding to a single particle-hole excitation. In the large
limit, all excited states with energiesvym /I with m = 1,2 or 3, discussed in section 2,
correspond to single particle-hole excitations. However, multiparticle-hole excitations begin
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Figure 3. (a) Logarithm of the coeff|C|entC°°| (empty bound state) as a function of chain
length fors/V — 0 andv = 1008 550% 1500 200 3 &5 33 30 35 & and §; the lines are best fits
to points with(/ — 1) > 10 by C°(, v) = A, ()N~ (b) The same forC°| (full bound
state). €¢) and @) Anderson exponentg, (c) and g (d). The curves areg.(v) = ”—22 and

Br(v) = A2% (I the limit 1/V = 0,v =1—8/7.)

to appear at: = 4. We might try to extract the FES exponent from the slope at low energies
and largd, assuming that the neglected multiparticle-hole excitations do not make too large
a contribution close to the threshold. Assumihg~ »~ in this region, then for small
E f(E) ~ E'™* = E”. The tangent of the curve should yield the FES exponent related
y = (%)2, but actually it is significantly smaller.

The calculations of the intensities of the first few peaksV(= 0.1; figure 5) shows
that finite-size corrections to these amplitudes are significant f0#400. Thus we should
not expect to be able to obtain the FES exponent reliably this way even if the neglect of
multiparticle-hole excitations was valid.

In figure 5 and table 1 we show the ratio of tiéal amplitude of all peaks at excitation
energyvprm /1, to the amplitude of the lowest pead & 0) for m = 1, 2, 3 for both a full
and an empty bound stat®’;” following the discussion in section 2/V = 0.1 and the
maximum length considered wés= 400. The predictions for’ from conformal field
theory in equation (2.22) are also shown in the figures and table. The finite-size corrections
to these ratios are quite large, but upon extrapolating inle obtain good agreement with
the CFT predictions in all six cases.

< \2
The finite-size corrections, at a fixed valuel pére roughly proportional té‘%) , Where

the effective phase shift in the presence of bound stale is 57 if the bound state is full,

andw — 8, if it is empty [4,6]. Thus CFT predictions in a finite system with a full bound
state are more accurate for low density than for high density, and the opposite for an empty
bound state.
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Figure 4. The normalized integral of intensity’ (E) = DB, <E % o' fOE I (w)dw, versus
energy, for the case of empty bound state apf — 0. Densityv = 2%; system size

(I — 1) = 21, 42, 84; 168. The best fits yielgy = 0.037, 0.047; 0.054 and Q060 respectively.

The CFT value is @82 (uppermost line). The clusters of almost degenerate excited states are
clearly seen (in one-pair approximation thth excited state ia-fold degenerate). The dotted

line shows the direct diagonalization results by Eder and Sawatzky [14]#dt, V = 32, N =

6,(l —1) = 21y = 0.021 Due to the normalization t§C%?, the curves are offset in the
vertical direction; as the system size grows, the plateau heights are reaching the universal values
predicted by CFT for the ratios of subsequent excited peak amplitudes to the lowest energy peak
amplitude (see equation 2.22 and figure 5). Inset: FES exponent versus inverse chain length.
The cubic extrapolation to infinite system siz€0) = 0.068 still falls short of the CFT value.

5. Sum rules and open questions

The Fourier transform of the core hole Green'’s function, proportional to the photo-emission
intensity, can be written:

I(@,v) =) [0} *8(E, — Eo — w) (5.1)

where|i) and E, label all states of the system with the core hole potential turned on and
|0), Eo refers to the ground state without the core hole potential. Here we make the fact
explicit that I depends on the electron density (ikg.). The stategn) can be classified
according to whether the bound state is full or empty and accordingly we may decompose

[ (w):

I(w,v) =If(w,v) + L(0, V). (5.2)

Near a threshold] (w, v) takes the form:

I(w,v) = F)(w — wg) ~*™. (5.3)

So far, we have focused on the value of the FES expor&nj, In this section we would

also like to consider the dependence of the amplitude fadfoon the density and the

behaviour ofI(w, v) away from the threshold. While most of this behaviour is clearly

non-universal, one might expect certain universal features to emmerge in the kmi0.

Our interest in this limit is motivated by the experiments on doped semiconductors [18].
To begin with we point out the existence of two sum rules. These apply very generally

to FES problems in arbitrary dimensions, without any particular assumptions about spherical
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the four points with smallest/l/ — 1). Note that these curves are in a good agreement with
the data in a larger range of @ — 1). (b) and €): The same for the second and third excited

states.

completeness of the statgg that 7 (w) obeys the sum rule:

This implies that the integrated intensities from the states with full or empty bound state

obey:

/ do I (w,v) = 1.

I +1,=1

(5.4)

(5.5)
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Table 1. Relative weights of firsin excited peaks in the hole propagator compared with CFT
predictions of equation (2.22). The relative weights in the limit oo are obtained from the
best fit to the finite-size values (figure () = co + c1/( — 1) + 2/ — 12 + c3/(I — 1)3

1/(l — 1) for each graphw(co) = co.

Empty
bound state v 0.1 0.2 0.3 0.4 0.5 0.6
m=1 (8F/m —1)? 0.0123 0.0485 0.1071 0.1859 0.2827 0.3960
relative weight 0.0122 0.0483 0.1067 0.1851 0.2816 0.3944
m=2 16r/m —1)2
x(L+ (Bp/m —1?) 0.0062 0.0254 0.0593 0.1102 0.1813 0.2764
relative weight 0.0062 0.0253 0.0589 0.1095 0.1802 0.2747
m=3 §6r/m — D21+ O /7 — D?)
x2+ /7 —1?) 0.0042 0.0174 0.0417 0.0803 0.1380 0.2207
relative weight 0.0041 0.0172 0.0412 0.0795 0.1367 0.2187
Full
boundstate v 0.1 0.2 0.3 0.4 0.5 0.6
m=1 8F /)2 0.7906 0.6079 0.4525 0.3236 0.2193 0.1374
relative weight 0.7868 0.6051 0.4505 0.3222 0.2184 0.1369
m=2 30r/m)?
x(L+ (8F/m)?) 0.7078 0.4887 0.3287 0.2142 0.1337 0.0782
relative weight 0.7025 0.4853 0.3264 0.2128 0.1329 0.0777
m=3 §6r/m2(L+ (6F/7)?)
X2+ (5 /m)d) 0.6584 0.4248 0.2687 0.1659 0.0989 0.0557
relative weight 0.6505 0.4202 0.2659 0.1642 0.0980 0.0552

Another useful sum rule can be derived by writidig(w, v) in terms of the projection
operatorip onto states in which the bound state is occupied:

/ dw Iy (@, v) = Y (0157} |* = (0l 5]0). (5.6)

We may write

Ap=vhvs (5.7)

whereyp annihilates the bound state electrahz can be expressed in terms of the operator
; which annihilates an electron at sifeand the bound state wavefunctiob;’:

vp =) Wy (5.8)
J
Thus:

Iy =Y WP Oy v;10). (5.9)
L]

In a d-dimensional continuum formulation this becomes:

Iy = / d'r o' WE )W ) 01y )y (7)[0). (5.10)
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At this point, it is convenient to Fourier expand the position-space annihilation operators.
The form of this expansion depends somewhat on the boundary conditions (in the system
without the core potential). In dimensio@s> 1 we generally consider a translationally
invariant system in which case:
dk
Yy = 2

In this case, the sum rule becomes:

dE T (5.11)

I :/ d'k [WE (k) |%0(er — €x) (5.12)
f (27 F k .

where W2 (k) is the Fourier transform of the bound-state wavefunction. Ehetegral is

only over states below the Fermi surface. This makes it cleadthainishes as — 0, and
approaches 1 as — 1. Roughly speaking, when the density is small, there is a negligible
probability of an electron being near the origin when the core potential is switched on so
that the overlap of the unperturbed ground state with any state in which the bound state is
occupied goes to zero. In the opposite limit of high density there is probability near 1 of an
electron being near the origin. Itis interesting to consider how ragidianishes as — 0.

If we assume that the dispersion relation and core potential are spherically symmetric, then
we may classify the bound state by its principal angular momentum quantum nuimber,

At small k, W8 (k) x k%, so

Iy o k2T o yIF2L/d, (5.13)

In a 1D translationally invariant system with reflection symmetry the bound state can
be classified as being an even or odd function:ofl; oc v for an even bound state of
for an odd bound state. When the potential is at the end of a 1D chain with a free boundary
condition,

-1
wEk) = sinkjyf. (5.14)
j=1

Thus W2 (k) o k ask — 0, soly o V3.

The behaviour of the FES exponeatatv — 0 follows, in some cases, from Levinson’s
theorem, which determines the behaviour of the phase shift-as0. For an s-wave bound
state, or for a 1D problem with the impurity at the end of the chain, the phase shift
approacheg at the bottom of the band when there is a bound state. Thus it follows, from
equations (2.17), (2.20) and (2.21) that — 0 andw, — 1. Thus, I;(w) becomes a
step function near its threshold addw) becomes &-function. @ = 1 corresponds to a
constant Green’s function in the time domain whose Fourier transform gigdsiraction.)
Thus I, (w, v) approaches, in the — 0 limit, the result for the empty system:safunction
of unit intensity. This follows since the ground state with no electrons is the same with or
without the core potential; it is simply the vacuum state. Thus we expect

F.v)—>1 (v — 0). (5.15)

The step inls(w, v) corresponds to electrons from the continuum falling into the bound
state after it is created. The probability for this process, and hépee), should vanish as
v — 0.

We have been unable to understand, from general argumentsFhow approaches
0 or F,(v) approaches 1 as — 0. More generally, we would like to know how the
functions I, (w) and It (w) behave even away from the thresholdwas> 0. In particular,
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it is interesting to ask whether there might be some sort of universal scaling form in that
limit. This behaviour is only weakly constrained by the above sum rules.

It is interesting to investigate these questions numerically. For a finite systamy)
is a sum ofs-functions corresponding to the discrete finite-size spectrum. For a large
system the intensities of the first few peaks, with the bound state full or empty, will all be
proportional toF,(v) or F,(v) respectively. This follows immediately from the conformal
transformation of section 2. Thus we may conveniently determiingv) numerically, for
a large finite system, from the ground-state overlap (Anderson orthogonality calculation).
That is:

22 TT \2x
0P =Fo) () (5.16)

The resulting functionsFy,.(v) are plotted in figure 6 for the special tight-binding model
considered in the previous two sections, in the limi¥¥ — 0. These are obtained from
the intercepts of the curves in figure 3. As can be seen from figure 7, at small

Fr(v) — 2012
e 2 (5.17)

Fo(v) > 1— (50"
The former equation suggests the scaling hypothesis:

It(@,v) = vV f(® — wo)/V] (5.18)
for some scaling functiorf. This is consistent with the sum rule since:

f dow I (w) = v3/ dr f(x) o3, (5.19)

o 0

In the v — 0O limit, the threshold frequencyy approachesp — ¢p, the binding energy
measured from the bottom of the band. The functjofx) must approach a constant at
the thresholdx — 0, consistent with the behaviour of the FES expongpnt— O as

v — 0. At large frequencies the functigf must vanish sufficiently rapidly for the integral

to converge. Apparently, the scale over whibtw) varies is set by o vg. If this is also

the relevant energy scale for a translationally invariant 1D system, or a higher-dimensional
s-wave bound state, then we would expect the behaviour:

I(w,vp) < f[(@ — wo)/vF] (5.20)

consistent with the sum rule. That is, the threshold peak has a fixed amplitude, but the
energy scale over whiclh(w) decreases scales to 0 as> 0. (We can speculate that in
our model, due to the suppression of the wavefunction near the end of the chain, the extra
factor of v2 appears in the expression ffy, which would be absent in the s-wave channel
of a higher-dimensional system, where the sum rule should yiégtead ofv3.) It would
be interesting to investigate this behaviour in more general models.
For almost all values of we found thatF, . are well described, for our special model,
by the functions

Fr() = vV ) = (1— )2V (5.21)

as shown in figures 6 and 7. (In two dimensions the dependEnge ~ v~ could be
expected from calculations based on the linked cluster approximation [27], but: wtR,
not %.) At very low densitiesF, (v) is still well described by (5.21), as evident from (5.17)
and figure 6, whileF,(v) approaches the 28-dependence of (5.17) (see figure 7).
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Figure 6. FES amplitude as a function of density. The valuesa)fK. and p) F; are plotted
versusv. The curves are”*(v) = (1 — )23 gng Fr(v) = v21-"%) potted curves
represent 1- 2v2/3 and 202 respectively (see text).

InF (v)

In(1-v)

Figure 7. FES amplitudes at low densities. Ib)(stars represent the data not shown in
figure 60); the relation Fr(v) ~ 20v2, the upper broken curve, is clearly seen. The lower
dotted curve ia2, the asymptotics OF;(v) atv — 0.

6. Conclusions

We have investigated the Anderson orthogonality catastrophe and Fermi edge singularity in
photo-emission spectrum in a tractable 1D tight-binding model of spinless electrons, in the
case where the core potential produces a bound state.

We have confirmed the predicted relation between the scattering phase on the Fermi
surface, 8y, and the Anderson and FES exponents. We have calculated the ratios of
intensities of discrete absorption peaks for a finite system, using CFT and checked the
formulae at both primary and secondary thresholds numerically. We have found that the
higher-order finite-size corrections are roughly proportionai%tcand can be significant in
a system as large as several hundred sites. Thus, they might be observable in a mesoscopic
system. The CFT-based relation between the exponents &hd)Qerm in the ground-
state energy shift was also confirmed. Using the model, we obtained the explicit density
dependence of the FES amplitude in the whole range. of
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Appendix A: Finite-size energy

In this appendix we wish to explicitly demonstrate the formula relating the finite-size
correction to the ground-state energy difference to the phase shift at the Fermi surface.
At the same time we will expose a subtlety in the definition of th@ /) term in this
energy difference. This ground-state energy difference contains a dominant term of O(1).
This is non-universal, depending on the ultraviolet cut-off in the Dirac fermion theory. It
must be subtracted correctly to determine the univerga) 0 correction. To be concrete,

we consider a tight-binding chain éf— 1 sites,j = 1,2,3, ...,/ — 1 with free boundary
conditions,N electrons and a scattering potentit], localized nearj = 0.

-2
H == (] ¥+ het Vigrlyy). (A1)
j=1

J

When V; = 0 the single particle eigenstates aresin A simple way of determining the
allowed wavevectors, is to imagine adding two ‘phantom sites’ at= 0 andj =/ and
then imposing the boundary condition:

Yo=1y; =0. (A2)

The Fourier expansion af; in terms of creation and annihilation operators then involves
sin(kj) with:

ky =mn/l n=123,....,1—1 (A3)
The ground-state energy féf = 0 is:
N
Eo=)_ e(kn) (A4)
m=1

with e(k) = —2r cosk. In fact, this discussion does not depend on the form(bf and can
be applied immediately to a more general Hamiltonian with longer range hopping provided
that the boundary condition of equation (A2) applies. The only property(ff that we
will use is that its derivative vanishes fat= 0.
In thel — oo limit, the Fermi wavevector is

ke = lim N/I. (A5)

For a finite system, there is an ambiguity of1/) in the definition ofkr since it may be
chosen anywhere betweeriV/! andz (N + 1)/1. It turns out to be convenient to chose it
to lie exactly halfway between th¥th andith level;

krp=m(N+23)/1. (A6)

This gives the model an approximate particle-hole symmetry, in the vicinity of the Fermi
surface. (Only at half-filling does this particle-hole symmetry become exact.) We regard
kr as being held fixed akis varied, for purposes of determining the term afLQ) in the
ground-state energy. Thus the quantity + 1/2)// must be held fixed. In practice, for
numerical simulations, this is not particularly more nor less difficult than holding fixed the
actual densityN/(l — 1). For instance, to obtaihr = 7 /4 we may chose the number of
sites/ — 1 = 4N + 1 for an arbitrary positive integey.
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The continuum limit Dirac theory is defined by only keeping wavevectors fgaf,

writing:

i~ e My () + €T YR()) (A7)
where ¢, x are left- and right-moving Dirac fields. The boundary conditions of
equation (A2) imply:

V(0 +¢yr(0) =0

ey () + e yg() = 0.
Using equation (A6) the last equation gives:

Yr() —yr() =0 (A9)

corresponding to the ‘same’ boundary conditions at both ends as discussed in section 2.
kr was chosen in equation (A6) in order to obtain this boundary condition on the Dirac
fermion.

Including the scattering potentialy;, the single-particle eigenstates still become
asymptotically plane waves, sin{ + §(k)] (at large distances compared with the range
of V), wheres(k) is the phase shift. Thus, the allowed wavevectors are now:

ky = ky — 8(kn)/1 (A10)

with k, = n/[. It is important to note that the argument®fn equation (A10) is,, not
k,. Thus, to Q1//?), we may write:

kn = fky) =k — 8hkn) /1 + 8 (k)8 (k) /1% (A11)

The ground-state energy can thus be written:

(A8)

N
Eo=Y e[k (A12)
n=1
This can be evaluated using the Euler—MacLaurin expansion:
N N
Z Fim—13) = / dx F(x) — 4[F'(N) — F'(0)] + O(F"). (A13)
m=1 0
Setting:
Fin—3) = e[ f(zn/D)] (A14)
where the functionf is given by equation (A11), we obtain the convenient result,
F(N) = €[ f(kr)]. (A15)
Thus, to Q1/1):
N
Bo= [ dnelslran+ H/i) - ven/24) (A16)
0
where
v = €'(kp) (A17)

and corrections of 1//?) have been dropped. Now it is convenient to change integration
variables to:

k=mn@m+3)/1 (A18)
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giving:
ke gk VETT
Eg=1 — 0] — ——. A19
o=t [ Setrion-5y (A19)

Here the lower limit of integration has been shiftedsy2!. This is justified since (k) is
quadratic att — 0, producing only corrections of @/[?) to Eo. Using equation (A11)
and expanding to @//) we obtain:

kp / " 2 / /
Eo = l/ dk |:€(k) € (k)s(k) n €’ (k)s<(k)y €k)é (k)S(k):| VpTT

T l 22 12 24 (A20)

24
Integrating by parts, and using(0) = 0, we finally obtain:

_ % L[ rvp [1780k0 T 1 1

0

Hereep = €(0) ander = €(kr). The first term of @) is the bulk ground-state energy.
The second term of Q) is a well known result referred to as Fumi’s theorem. Note that
these terms depend anand§ over the whole band. On the other hand, the final term
of O(1/1) depends only on data right at the Fermi surface, namgland§(kr). The 2%1

term is the well known conformal field theory result for open boundary conditions. The
additional B(kr)/m]? term gives the effect on the ground-state energy of changing the
boundary conditions. This formula can be checked for the nearest-neighbour model, with
€(k) = 2t cogk), and free boundary conditions. The exact ground-state energy is given by
a geometric series:

Eo—t tsinkg
0= "7 Sin(z/20)
!
L N ¢ V1) (A22)
b4 24]

with vy = 2¢ sinkg.

We note that adopting a different definition iof, such ast N /(I — 1) in the 1D model,
corresponds to adding &independent term to the phase shift ¢ %), wherev is the
density, in this case). Equation (A22) still holds, when written in terms of this redefined
phase shift. This discussion was given for the case of a 1D tight-binding model with free
ends but it can easily be generalized, for example to the s-wave sector of a 3D spherically
symmetric continuum model with a vanishing boundary condition on the surface of a sphere
of radius/. With an appropriate definition ofr (essentially defining, to Q/I) what is
held fixed ad is varied), equation (A22) is again obtained.

We can easily generalize equation (A22) to calculate the energy of a state witna
electrons added, with held fixed asNV and! — oco. This gives:

E,=Eo+ ) elkr —8(kp)/l+m(m—3)/1]
m=1

= Eq+ nep + (vpm/l) Z(m — 3= 8(kp)/m) +O(1/17). (A23)

m=1

Hence

ke di 1 [ v [1 S ? 1 1
En—l/o\ ne(k)_j-r/;o d68(6)+n€F+l{2[n_ T } _?4- +O(lz>.
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Appendix B: Dispersion law and wavefunctions in a 1D tight-binding chain

Here we calculate exactly the phase shift, finite-size spectrum, eigenstates and overlaps for
the 1D tight-binding model with an impurity potential at one end, given in equation (3.1).
It can easily be seen that the eigenstates can be written exactly in the form:

W o« sink(j —1). (B1)

This wavefunction trivially satisfies the lattice Sodinger equation (for arbitrark) at all
sites 23,...,1 — 1, with:

€(k) = —2t cosk. (B2)
The Schiédinger equation for the first site determines the allowed valugs of

—tWy — VW = €Wy, (B3)

Inserting equation (B1) and (B2), we obtain:

szi(rikl 2= % (B4)
For sufficiently largeV /¢ there is also a bound state with the wavefunction:

x; o< sinhk (I — j) (B5)
wherex > 0 so that the wavefunction decreases whiencreases. This has the energy:

€p = —2t coshw. (B6)

Again the Schiidinger equation is automatically satisfied (for arjyat all sites except the
first which gives the condition determining

sinhk (I — 1) _

= _—. B7
sinh«! % &7

Forl > 1, this gives:
e“=t/V. (B8)

Sincex must be positive, we see that there is only a bound-state solution fer. In this
case:

eg=—(V+12/V). (B9)

For the continuum states we may calculate the exact phase shift, defined by the form of the
wavefunction forl > 1:

W o sinfkj + 8(k)]. (B10)
From equation (B1) we see that:

—kl = 8(k) +7n (B11)
for some integer, in the limit/ — oco. Substituting this into equation (B4), we obtain:

sin[a(k) + k] _ i. (812)
sin[é (k)] Vv
This gives:

sink
s=arctan ——— —|. (B13)
t/V — cosk
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We now consider in more detail the spectrum of the finite system-ot sites. With
no potential, there are— 1 band wavefunctions with:

ke =nm/l  n=1,23....(-1. (B14)

Including the attractive potential, we see from equation (B7) that there is a solution of the
form sinh«(j — 1) for 1/V < 1 —1/1. We label this solutior#; and ¥, For this range of
t/V equation (B4) has only — 2 solutions ks, ks, ..., k,_1. In particular, forV/: — oo,
thesel — 2 solutions becomek, = (n — 1)7/(I — 1), corresponding to a chain with free
boundary condition at both ends ahd- 2 sites.

The normalization of the band states can be calculated exactly in teringsifg:

=1 , 1 sink(l — 1) coskl
;smzk(]—l)zz[(l—l)—sink]. (B15)

Similarly the normalization of the bound state is determined by:

(B16)

-1 _ 1 sinhx (I — 1) coshkl
;Slnhzlc(]—l)——é [(1—1)— sinhe ]

The overlaps of band wavefunctions with and without the potential can be calculated
similarly using:

-1 . .o . . -

. - sink(l — 1) sinlk — sinlk sin(l — 1)k
> sink(j —)sink(j — 1) = (t—1)sinik (= Dk
= 2[cosk — cosk]

(B17)

If k andk are allowed wavevectors corresponding to potentialand V, respectively, then
using equation (B4),

-1 N — Vi) sink(l — 1) sink(l — 1
sink(j — Dy sink(j — 1) = (2= VW SInk@=Dsink@=1) = gy g
= 2t[cosk — cosk]
Thus we obtain the extremely useful result:
(B |w) = (V2 — V1)C(k2C(k) (B19)
e(k) —e(k)
wheree (k) = —2¢ cosk is the band energy and
2si -1
Ch) = V2sink( — 1) (B20)

(@ =1) = sink(l — 1) coskl/sink "

The corresponding result involving the bound state immediately follow upon repladigg
ix. €(k) simply gets replaced byz = —2¢ coshe and C (k) gets replaced by
c V2 sinhk(l — 1)
B= J/sinhe (I = 1) coshwl/sinhk — (1 = 1)

(B21)

To calculate the overlap of the = 0 ground state with an arbitrary state with# 0, we
simply setV; = 0 andV, = V in the above formula. This remarkably simply form for the
overlaps of single-particle wavefunctions leads to enormous simplifications in the calculation
of the overlap of the Bloch determinant multiparticle states, as shown in section 4.
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